
宇宙ではなぜ身体が浮くの?

一人工衛星の運動と無重力-

本教材は宇宙とのつな がりを軸として科学を 身近に感じてもらうた めに作った科学教材で す。本教材の利用によ る事故等については一 切責任を持ちかねます ので、本教材の利用は、 経験のある指導者の指 導の下に行って下さい。

STS-92 ミッション(若田宇宙飛行士搭乗)で ミッドデッキに揃ったクルー

●教材提供● 日本宇宙少年団 横浜分団 竹前俊昭氏・寺浦久仁香氏

2007年2月28日 発行 2008年4月 1日 改訂

目標と ねらい

宇宙のイメージとして真っ先に浮かぶのが、「無重力」(正確には微少重力や無重量とい う)。しかし、真空と無重力を分離できないものとして考えたり、本当に重力がなくなっ ているとカン違いしていないでしょうか。ここでは、宇宙船の中ではなぜ重さがなくな るのか、簡単な実験を交えながら考えていきます。

対象学年

小学校高学年以上

所要時間

2~3時間

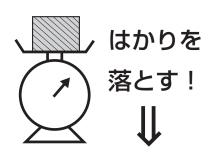
体重を軽くする方法は?

「体重」を気にしている人は多いですが、この数字 を小さくできる(夢のような)方法はないでしょうか。

①実際に体重計に乗りながら考えてみよう

最近の体重計はデジタル表示が多いですが、この実 験に使用する体重計は、動的変化がわかる針表示がべ ストです。動きが激しい場合は、針の表示部をビデオ カメラで撮影し、スロー再生で見れば、変化の様子が はっきりと確認できます。

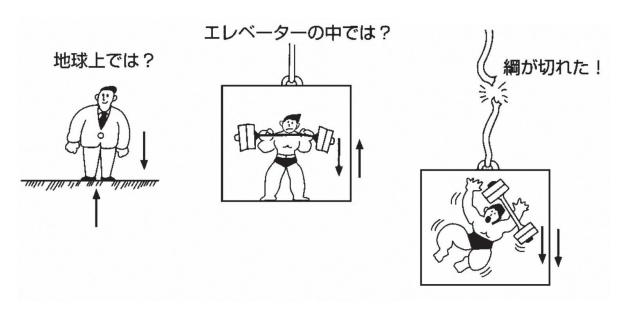
この体重計実験でわかるのは、「急にしゃがみ込む と一瞬体重は軽くなる」ことです。多くの子どもは、 体重計になるべくふれないようにと考えます。片足立 ちしたり、少しでも浮こうとして飛び上がったりしま すが、片足立ちではまったく変わらないし、飛び上がっ たその瞬間は、逆に体重が増えてしまいます。


飛び跳ね たり……

片足を上げ たり……

②物をのせたはかりを落としたらどうなる?

乗っている人間が急にしゃがむ(下向きに動く)と重さは軽くなりましたが、次は乗っている人ではなく、は かりを落とす(下向きに動かす)と、表示している重さはどうなるでしょう。早くて見づらければ、ビデオカメ ラで撮影してスロー再生を見るのがいいでしょう。この場合も、重さが軽くなっていることがわかります。


目盛りは 軽い方へ動く

③どうやら物が落下するときに、重さは軽くなるらしい

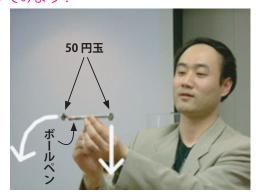
以上2つの実験から、「落下しているときは重さが軽くなっている」ということが体験的にわかります。 実際に遊園地のフリーフォールやバンジージャンプで、この身体がふわっと浮く(体重が軽くなる)体験をし た子どももいるでしょう。

もっと身近な例では、エレベーターが下り始めたときに一瞬「ふわっ」とした感じがします。(最近のエレベー ターは改良されて、ふわっとした感じがほとんどしませんが、その場合は「下り始めると同時にしゃがみ込む」 ことをしてみてください。

体重が軽くなる現象の説明として、このエレベーターの例はよく出てきます。しかし実際にロープが切れて落 下するエレベーターに乗るわけにはいかないし、図を見ただけでは実感に至りません。①、②は、知識と経験を 結ぶ重要な実験です。

自由落下と水平投射

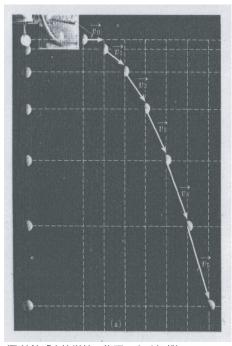
重力以外の力が働かない状態での物体の運動を「自由落下」と言います。難しい表現ですが、物が自然に落ち るときの状態と思えばいいでしょう。さてこの自由落下中は、重さが軽くなる(なくなる)ことが体感を通して わかりました。次は、落下運動とスペースシャトル(人工衛星)の運動を関連させる実験をしていきましょう。


①どちらが早く落ちるかな?

スペースシャトルを含む人工衛星は「落下しながら地球の周りを回っている」ことを、人工衛星 2-1 ~8ペー ジの「人工衛星をよく知ろう」で理解しました。ただし、動きながら落ちているので、先の体重計(はかり)や エレベーターの話とは、頭の中ではつながっていない子どもがほとんどです。

そこで登場するのが、超簡単な「自由落下・水平投射同時実験装置」です。

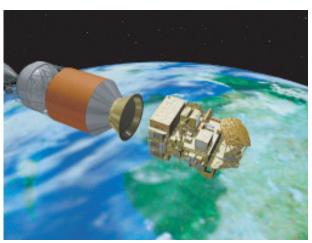
両端につけた50円玉、真下と真横、どちらが先に落ちるかな? 落下音をよーく聞いてみよう!


- (1) バネで戻るプッシュ式のボールペンと画鋲と接着剤 を用意し、プッシュボタン部に画鋲を貼りつけます。
- (2) ボールペンを水平に持ち、プッシュボタンを押して ペン先を出したら、ペン先と画鋲の両方に50円玉をか けます。
- (3) この状態でペン先を引っ込めたらどうなるでしょ う? ペン先の50円玉は真下に落ち(自由落下)、画鋲 の50円玉は真横に飛ばされます(水平投射)。果たして、 どちらの50円玉が先に落ちるでしょうか。落下音を集 中して聞くのもよし、ビデオカメラで撮影するのもいい でしょう。
- **●答えは、「同時」です**。予想は当たったでしょうか。

②水平投射のとき、重力の鉛直方向の成分は?

自由落下と水平投射では、明らかに水平投射の方が道筋は長くなって います。それにも関わらず、同時に着地するのはなぜでしょうか。

右の写真は、自由落下と水平投射を同時にしたときの物体の動きを、 同じ間隔で撮影したものです。ここで注目すべきは、両者の鉛直方向(重 力の向き)の成分がまったく同じということです。つまり、横に投げ出 された物体の重さは、真下に落下しているときと同様に軽くなる(なく なる)のです。じつは、地球の周りを回っている人工衛星の中でも、同 じことが起こっています。


(啓林館「高等学校・物理」より転載)

③人工衛星は水平に打ち出されている

人工衛星は地球の周りを「落下しながら」回っていて、 落下しているがゆえに重さがない状態であることがわかり ました。では最後に、ロケットの打上げと人工衛星の軌道 を結ぶ話をしましょう。

テレビで中継されるロケット打上げの様子だけでは、地 上からまっすぐに上昇していけば、人工衛星はそのまま軌 道に乗ってしまうと思われるかもしれません。しかし実際 に人工衛星を分離する(軌道に投入する)ときのロケット の向きは、地面とほぼ水平になっています。

厳密にはすべての人工衛星が地面と水平の向きではあり ませんが、ロケットは空気のない宇宙まで行ってから、人 工衛星を「水平投射」しているのです。

地球観測衛星「みどり 2」をロケットから分離するときの 想像図

安全対策

「自由落下・水平投射同時実験装置」に使用する画鋲の針は、安全のため先の尖りを削り、 目立つ色のテープを巻いておく。実験するときは、50円玉が人のいる方向に飛んでいかない ように気をつける。

褶指導要領

小学校 3年 理科(粒子) 中学校 3年 理科(エネルギー) 中学校 3年

中学校 3年 数学(関数)

物と重さ 運動の規則性 理科(エネルギー・粒子) 科学技術の発展 関数 y=ax²

キーワード 人工衛星 無重力 無重量 微小重力(マイクログラビティ)

竹前俊昭氏・寺浦久仁香氏

教材提供 :日本宇宙少年団横浜分団 :財団法人日本宇宙少年団 YAC 株式会社学習研究社 協力

発行 : 宇宙航空研究開発機構 宇宙教育センター ©JAXA2009 無断転載を禁じます